Optimization landscape of Tucker decomposition
نویسندگان
چکیده
منابع مشابه
Equivariant and scale-free Tucker decomposition models
Analyses of array-valued datasets often involve reduced-rank array approximations, typically obtained via least-squares or truncations of array decompositions. However, least-squares approximations tend to be noisy in high-dimensional settings, and may not be appropriate for arrays that include discrete or ordinal measurements. This article develops methodology to obtain low-rank model-based re...
متن کاملSome Theory on Non-negative Tucker Decomposition
Some theoretical difficulties that arise from dimensionality reduction for tensors with non-negative coefficients is discussed in this paper. A necessary and sufficient condition is derived for a low nonnegative rank tensor to admit a non-negative Tucker decomposition with a core of the same non-negative rank. Moreover, we provide evidence that the only algorithm operating mode-wise, minimizing...
متن کاملElementary landscape decomposition of the 0-1 unconstrained quadratic optimization
Landscapes’ theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a especial kind of landscape called elementary landscape. The elementary landscape decomposition of a combinatorial optimization problem is a useful tool for understanding the problem. Such decomposition provides an additional knowledge on the problem that c...
متن کاملElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem,
There exist local search landscapes where the evaluation function is an eigenfunction of the graph Laplacian that corresponds to the neighborhood structure of the search space. Problems that display this structure are called “Elementary Landscapes” and they have a number of special mathematical properties. The problems that are not elementary landscapes can be decomposed in a sum of elementary ...
متن کاملAlternating proximal gradient method for sparse nonnegative Tucker decomposition
Multi-way data arises inmany applications such as electroencephalography classification, face recognition, text mining and hyperspectral data analysis. Tensor decomposition has been commonly used to find the hidden factors and elicit the intrinsic structures of the multi-way data. This paper considers sparse nonnegative Tucker decomposition (NTD), which is to decompose a given tensor into the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2020
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-020-01531-z